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A channel model using a finite-difference gridpoint method is described. Integrations 
with this model produce large amplitude, high wavenumber “noise” near the lateral 
walls, which corrupts the interior solution. A technique is presented that employs scale- 
dependent filters to eliminate the generation of the boundary noise, while leaving the 
interior flow relatively unchanged. The effectiveness of the technique is demonstrated. 

1. INTR~DIJCTI~N 

This paper describes some work done with a primitive equation model and with 
a scale-dependent filtering technique [lo]. As part of his Doctoral research at the 
Massachusetts Institute of Technology, the author intended to use this model 
to study the growth of and subsequent frontogenesis associated with unstable 
Eady waves (see, for example, [l]) in a channel flow. Such integrations could not 
be completed because of short wavelength, large amplitude waves, which developed 
at the channel walls and dominated the interior flow evolution. This lateral 
boundary problem was never overcome; instead, a different basic state modeling 
an internal, baroclinic jet in a channel was chosen for study. Near the lateral walls, 
the wind was reduced to zero so the evolving flow was never affected by the 
boundary problem. The resulting work is described by Mudrick [5, 61. 

This difficulty with boundary “noise” certainly is not confined to the Eady wave 
within channel flow problem. Hunt [3] experienced a similar problem with his 
“semi-spectral” global atmospheric integrations, and he chose a filter similar to the 
technique discussed here. 

The above-mentioned works used inviscid equations with appropriate boundary 
conditions. The difficulty may arise ultimately because of the lack of viscous effects 
in the model flows. As discussed by Gal-Chen and Somerville [2], a flow containing 
viscosity, no matter how small, will always form viscous boundary layers near 
physical boundaries. These layers confine wall effects to the region near the walls. 
One might try to match a boundary layer solution for viscous, near-wall flow to the 
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34 STEPHEN MUDRICK 

assumed inviscid flow outside the boundary layer; this not only is a difficult fluid 
dynamics problem but also would be expensive from a computational viewpoint. 
We prefer to maintain the simpler inviscid model formulation. 

The use of filtering to prevent boundary effects from corrupting the interior flow 
is not new. The purpose of this paper is to demonstrate the ability of Shapiro’s 
[9, IO] scale-dependent filtering technique to perform this task. The filter described 
here is only a numerical procedure applied with no physical models in mind, yet 
it works in a manner similar to a viscous boundary layer by insulating the interior 
flow from wall effects. 

2. THE MODEL 

The basic set of nondimensional equations is for a dry, hydrostatic, inviscid, 
adiabatic atmosphere. The Boussinesq approximation is made. The domain of 
integration is a reentrant channel with rigid horizontal and vertical boundaries: 
O<X<l,O<Y\ < 1, 0 < z < 1, and 0 < t, where I is the nondimensional 
channel length. The equations are 

db 0 
t= 

where 

d -= 
dt 

The boundary conditions are 

w(x, y, 0) = w(x, y, 1) = u(x, 0, z) = u(x, 1, z) = 0; a(x * z, y, z) = cX(x, y, z), 

where (II is any variable. In these integrations the Coriolis parameter f is constant 
and equal to unity. The variable b is called the “buoyancy.” 

These equations are integrated in time by a two step, Lax-Wendroff-like 
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procedure using a staggered Eliassen grid representation of the variables. It is an 
extension to three space dimensions of the two-dimensional scheme of Phillips [7] 
and is of second-order accuracy in space and time with respect to truncation error. 
Since the above reference is somewhat obscure, a brief explanation of the scheme, 
closely following [7], is given for the variable U. Variables u and b are similar. 

Consider the x component of the equation of motion written symbolically as 
du/dt = X, where X represents the x component of force. Let the variables be 
known at time t = 12 dt, the nth timestep. The first step of the procedure is to 
calculate u at the half timestep (n + i) d t, from values of the variables at time n dt, 
by doing an upstream trajectory calculation directly for du/dt. Allowing a prime 
to indicate a half timestep quantity, we write the above equation as 

u’[x, y, z, (n + 4) At] = u*(x*, y*, z*, n At) + g At x,,,,,*,,, , 

where the subscript means X is evaluated from variables at that place and time. 
The variable U* is the value of u at time n dt at the point 

x* = x - &ii At, y” =y-@At, z*=z-~8wAt 9 

where U, 6, and W are suitably averaged values of u, v, and w  in the neighborhood 
of point (x, y, z), at time n At. (Due to the staggered grid, x, y, and z will have 
differing values depending upon the variable being forecast.) Thus, the point 
(x*, y*, z*) defines the location at time n At of the particle which at time (n + 4) At 
is located at (x, y, z). Then 2(u’ - u*)/At is a direct, “uncentered” finite-difference 
equivalent to duldt. Since (x*, y*, z*) normally will not coincide with a gridpoint, 
U* must be interpolated from gridpoint values of u at time IZ At. The interpolation 
formulas are discussed for the two-dimensional case in [7], as are the formulas 
for ii and V mentioned above. 

At the full timestep (n + 1) At, centered differences in time are used with the 
advective terms in “flux” or conservation law form: 

4x, Y, z, (n + 1) AtI 

= u(x, y, z, n At) + At (- & u’u’ - ; u’u’ - $ w’u’ + x’j 
x.Y.a,(n+(l/%))dt . 

The half timestep procedure used above damps slightly all wavelengths greater than 
two grid intervals, short waves more so than longer waves. The staggered grids 
(described below) vary in position at the half and full timesteps. The variables p 
and w  are calcuIated diagnostically from the hydrostatic and continuity equations, 
respectively, both at the half and full timesteps, subsequent to the forecasts of b, u, 
and u; p is on the same vertical level as are b, U, and v while w  is staggered between 
them in the vertical. 
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We now describe the staggered location of the variables on the discrete grid. 
Primed variables refer to the half timestep (n + +) dt, and unprimed variables 
refer to the full timestep (n + 1) dt, for the nth timestep. Let the indices i, j, k 
represent the discretized location of the variables with respect to the x, y, z 
coordinate system. We have i = 1,2 ,..., I; j = 1, 2 ,..., .Z - 1 or J as described 
below; and k = 1, 2,..., K. The lowest level is at k = 1. Further, let dx = Z/(Z - 2), 
dy = l/(.Z - 2), and dz = l/K. 

At the half timestep the locations of the variables are as follows: 

b&c 7 P& x = (i - l&lx, Y = (j - lYY, z=(k- 1/2)Az, jmax=J- 1 
, 

%k 

6, 

I 

x = (i - l&lx, Y = (j - 3/2)Ay, z = (k - l/2)42, jmax = J 

x = (i - 1/2)dx, y = (j - l)dy, z = (k - l/2)42, jmax = J- I 

Wijk x = (i - 1/2)dx, y = (j - 3/2)dy, z = k AZ, jmax = J. 

At the full timestep, we have: 

biik ,piik x = (i - 1/2)Ax, y = (j - 3/2)Ay, z = (k - l/2)42, jmax = J 

%k x = (i - 1/2)dx, y = (j - l)dy, z=(k- l/2)42, jmax= J- 1 

%k x = (i - l)dx, Y = (j - 3/2)Ay, z = (k - l/2)42, jmax = J 

Wiik x = (i - l&lx, Y = (j - ~)AY, z=kAz, jmax= J- 1. 

The above arrangement is summarized in Fig. 1. 
The periodic boundary conditions in the x direction are included on the discrete 

grid as follows. Let ‘$ik be any variable on the grid; aijk for i = 2 to Z - 1 is 
computed from the appropriate equation. Then aIik = aI--l,jSk and &!]jk = aZjk . 

The lateral boundary conditions at the y = 0 wall will now be discussed; the 
boundary conditions at the y = 1 wall are similar. (For convenience, we shall refer 
to the y = 0 wall as the “southern” wall and to the y = 1 wall as the “northern” 
wall, as if the channel is aligned east-west.) 

At the half timestep: b;,, and vhk lie within the domain (0 < y < I) while 
u;lk and will, lie Ay/2 outside the domain and, hence, must be computed diagnos- 
tically from values inside the domain. We require: b;,, , forecast as are interior 
values of bjik ; uilk , computed from interior values of uljk, z&, by requiring that 
the relative vorticity au/ax - &/8y be the same on the boundary as at the first 
interior row; v;rk = 0; and wilk = wizk . 

At the full timestep: uiIk and WiIk lie within the domain (0 < y < 1) while bilk 
and vilk lie Ay/2 outside the domain and, hence, they must be computed diagnos- 
tically from values inside the domain. We require: bilk , computed from interior 
values of uiik , birk from the thermal wind relation ab/ay = -f(au/az), which is 
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x=0 
t~-‘L-+ 

A. HALF TII.lESTEP x- 

“IIT b,, -.- bi.l.m Y,,~--. b&,, -- 

I 
x=0 

\-Ax -..A 

B. FULL TIMESTEP x- 

FIG. 1. Arrangement of variables near y  = 0 (southern wall) for x - y  plane at level z = 
dz(k - +). Variables in parentheses are located idz above this level. Both pjjr and pijk are at 
same locations as are L&, and bCjlC, respectively. 

exact at y = 0 since u = 0 (see Appendix 2 for additional details); uilk, forecast 
as are interior values of uijk ; uilk = -vifk ; and wilk , computed as are interior 
values of wijs . 

Various changes were made in the boundary conditions, all second-order 
accurate in space, but no improvement in model performance was effected with 
respect to the lateral boundary problem. Mudrick [5] provides more details 
concerning the model equations and finite-difference techniques. 

It was noticed that for the Eady cyclogenesis case as described below (both in 
integrations at the Massachusetts Institute of Technology and AFCRL), regions 
of negative buoyancy lapse rate tended to develop near the lateral boundaries. 
Within these regions, Ab/Az became negative, corresponding to superadiabatic 
atmospheric lapse rates. These were generated by unrealistic values of b associated 
with the high wavenumber “noise” at the lateral boundaries. 

A dry, convective adjustment scheme similar to that of Manabe et al. [4] 
therefore was added to the model. A column undergoing adjustment has Ab/Az 
set to zero from its negative value; potential energy of the column is conserved 
during adjustment. This procedure will decrease the average buoyancy of the 
column so total buoyancy no longer will be conserved during an integration but 
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will decrease with time (see Appendix 1). As the lateral boundary noise develops 
much earlier in the runs than do the areas of negative buoyancy lapse rate, 
inclusion of the convective adjustment scheme will not alleviate this problem, but 
convective adjustment will eliminate the danger of further generation of high 
wavenumber components by “gravitational instability.” 

3. THE FILTER 

As mentioned, the finite-difference scheme contains implicit damping of short 
waves. This damping is not sufficient to reduce the high wavenumber components 
being generated at the lateral boundaries. The addition of any explicit filter will 
introduce added dissipation and a loss of energy with time. We wish to confine 
this loss to the higher wavenumber noise. A filter will be considered to be “effective” 
if it can remove the noise generated mainly at the boundaries and yet leave 
relatively unchanged the amplitude and phase speed of longer waves. 

Shapiro [9, lo] has developed a class of linear filters that can be made 
increasingly scale dependent; as the order of the filter is increased, it becomes more 
sensitive in its discrimination between long and short wave components. Such a 
filter removes two-grid interval waves completely, yet can produce little or no 
damping of longer waves (see [lo, Table I], for example). 

The specific filter used here is based upon the stencils presented by Shapiro’s 
[IO, Table 21 and is applied to the channel model, after each full timestep compu- 
tation, as follows. (His Table 2, modified slightly, is presented herein as Table I.) 
The prognostic variables biik , u$jk , and &jk are filtered; the diagnostic fields &jk 
and wijk are not. 

A “symmetric” filter is used; that is, the same order filter that is applied east-west 
is applied north-south, starting with row .j = 2 which is just inside the southern 
wall (see Fig. 1). 

The filter is applied in two passes. First a north-south filter is used, starting 
with rowj = 2. For this row, we use what Shapiro calls the “zero-order” filter 

%2k = $(%lk + 2ai2k + %k), 

where (Yijk is a variable at the i, j, k gridpoint. For row j = 3, we use the “first- 
order” filter 

As we go further into the interior (increasing j) we increase the order of the filter 
until at row j = 7, and for the remainder of the interior we use a “fifth-order” filter 
(see Table I; replace m by j). The same procedure is used near the northern wall. 
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No filtering is done on row j = 1, which falls outside the boundary for bilk and vilk 
and on the boundary for uilk, and no filtering is done in the vertical. 

Next, an east-west filter is applied to the diik field, starting again at row j = 2 
and proceeding into the interior: 

kc = H~ii-1.2k + 242k + %+1.d 

E. %3k = M-L,3k + 4L,3k + 10&31, + 4k+1,3k - ~ii+z,3k), etc. 

Again the fifth-order east-west filter is used for rows j 3 7 (replace m by i in 
Table I), and again the same procedure is used near the northern wall. The ?i& 
field is the fully filtered field. 

The construction of this filter is constrained by the fact that the variables are 
defined for only one row outside the lateral walls. The use of higher-order filters 
near the walls can be accomplished if approrpiate boundary conditions are present 
For example, periodic boundary conditions allow any order filter to be extendec 
to all points. One must be careful in defining added boundary values to fit the order 
of the filter desired; Shapiro [8] describes some disastrous consequences of thk 
approach. 

4. THE EXPERIMENT 

The Eady cyclogenesis problem was chosen for experimentation because of its 
simple basic state and because of the strong vertical wind shear at the lateral 
boundaries, which leads to the boundary difficulties. 

The initial fields of b, U, and v are obtained from the basic state plus a small 
perturbation. We first describe the basic state. For this experiment, dimensional 
parameters are taken as follows: The Coriolis parameter f is 1O-4 set-l, channel 
length and width L are 5 x lo6 m and depth is lo4 m. The initial atmospheric 
stability, taken as constant, is obtained by assuming a lapse rate of -6.5”C km-l 
with a temperature of 265°K at 650 mb. The wind u is a function of height only, 
varying linearly from 25 m set-l at the top of the channel to -25 m set-l at the 
bottom; the vertically averaged wind is thus zero so a growing disturbance will 
tend to remain fixed in location. The basic state wind components v and w  are zero. 
The above parameters yield a Richardson number of 5.2. 

The nondimensional basic state wind is given by u = 0.10 (z - 4). (Multiply 
this by fL = 500 m set-l to obtain the dimensional wind.) The wind is balanced 
geostrophically by a buoyancy field increasing linearly with height and decreasing 
linearly northward (with increasing y). 

The perturbation structure, added to the basic state, is that of an unstable 
Eady wave in a channel. The maximum value of the perturbation north-south 
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wind v is 5 % of the maximum value of the basic state wind. This gives the total 
wind field. An initialization procedure, described in [5], is then used to obtain 
adjusted initial wind and buoyancy fields. The initial fields of b, U, and ZJ thus 
consist of a “basic state” part plus a small perturbation, with some slight modifi- 
cation due to the initialization process. The model now is integrated forward in 
time; the entire fields of wind and buoyancy are free to evolve. 

Four integrations were made on the CDC 6600 at AFCRL: run 1 without 
convective adjustment and without filtering, run 2 with convective adjustment 
but no filtering, and runs 3 and 4 without and with convective adjustment, 
respectively, and both with filtering. The filtering process was applied once each 
timestep. All runs made had 18 x 18 x 5 gridpoints within the domain of 
integration, or a dimensional spacing of 278 km in the horizontal and 2 km in the 
vertical. This resolution allowed for wavenumbers one through nine, wavenumber 
nine being the two-grid interval wave. A timestep of 0.18 or 30 min was used 
although the linear stability criterion allowed a maximum step of over 60 min. 
Runs 1 and 2 were quite similar to each other, as were runs 3 and 4. The major 
differences resulted from use of the filter rather than from use of the convective 
adjustment scheme (see Table II and Appendix 1). 

5. RESULTS 

We now compare the buoyancy field generated by run 2, without filtering, to 
that generated by run 4, with filtering. Both runs included convective adjustment. 
(Appendix 1 presents a discussion of these runs and of those without convective 
adjustment, runs 1 and 3, with respect to the variation of total momentum, 
buoyancy, and energy.) 

The surface buoyancy field (level k = 1) at the start of the integration (not 
shown), decreases linearly northward from a maximum value of 0.106 at the 
southernmost row to a value of zero at the northernmost row. There is a slight 
variation in the east-west direction. As the unstable Eady wave amplifies with time, 
the surface buoyancy field becomes progressively distorted by the northward 
advection of high b values (warm air) and by the southward advection of low b 
values (cold air). The “warm tongue” gradually narrows with time as the wave 
“occludes.” 

Figures 2 and 3 show the surface buoyancy field at timestep 200 for runs 2 and 4, 
respectively. We discuss the fields at step 200 because beyond this time, gradients 
associated with the formation of frontal zones become too narrow to be resolved 
by the grid spacing. The width of the warm tongue in Figs. 2 and 3 is approaching 
one grid distance; evidence of truncation error can be seen in the separation of the 
area warmer than 0.085 into three regions within the warm tongue. 
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FIG. 2. Surface buoyancy b (level k = 1) timestep 200, for run 2, convective adjustment, 
no filter. 

7- 

FIG. 3. Same as Fig. 2, except for run 4, convective adjustment and filter. 
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The presence of two-grid interval waves can be seen in run 2 (Fig. 2), oriented 
both east-west and north-south, especially near the southern boundary. Values of b 
are presented at a few gridpoints near the southernmost and northernmost rows 
where contours would be impractical to draw. The addition of the filter in run 4 
(Fig. 3) is seen to remove the high wavenumber components near the walls, yet to 
leave virtually untouched the larger scale buoyancy pattern. 

Along the southernmost row, values of b range from 0.316 to -0.077 in Fig. 2 
and from 0.156 to 0.061 in Fig. 3. Initially, the value was 0.106; evidently some 
boundary problem still remains as a spuriously warm region is created even with 
strong filtering near the walls. 

Figures 4 and 5 present east-west vertical cross sections along row j = 7 for 
levels k = 1 to k = 3. (Row j = 7 is located about one-third of the distance 
between the southern and northern walls.) Buoyancy b and vertical motion w  are 
displayed for timestep 200; in reality, w  is located @y north of b but has been 
drawn in the same cross section. Fig. 4 displays run 2 and Fig. 5 displays run 4. 
We see that, except for the presence of slightly more high wavenumber components 
in w  in the nonfiltered run, the fields are quire similar. In particular, the location 

I I I II I,, I, I I I ,I,,1 I 
I 4 7 IO 13 16 19 

A 

FIG. 4. Buoyancy b (solid lines), and vertical motion w (dashed lines), in x - z cross section 
(east-west); j = 7, k = 1 - 3 for run 2, timestep 200. Tic marks show location of 6 gridpoints. 
This cross section is located between 7’s in Fig. 2. 

.02 0 -.02 -.04 -.06 - 04-02 0 02 04 .04 .02 0 

FIG. 5. Same as Fig. 4, except for run 4. Cross section is located between 7’s in Fig. 3. 
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of the sloping cold frontal zone (between i = 13 and i = 16) and the strength of 
the vertical circulation around the zone are quite similar. 

We next take three east-west rows of data, b (i, j = 1, k = l), b(i, j = 7, k = l), 
and b (i, j = 13, k = l), and we decompose the data into their Fourier com- 
ponents, comparing runs 2 and 4. Fig. 6 displays the amplitude versus wavenumber 
for each component. Timesteps 40, 120, and 200 are displayed. For row j = 1, 
just outside the southern boundary, we see from Fig. 6a that by step 200 the 
nonfiltered run 2 has generated nearly equal amplitudes for all wavenumbers, 
a fact apparent from Fig. 2. This “white noise” is to be constrasted to the behavior 
of run 4 where the strong filtering inside and near the wall has produced a rapid 
fall-off in amplitude with increasing wavenumber. 

T- 

1 

I 

n 

r -X-RUN 2 

----.---- IN 4 I 

I 

u- 

T- 

824 124 124 124 I 2 4 I24 I 2 4 ‘I 2 4. 124 
s 

FIG. 6. Amplitude versus wavenumber S for buoyancy. Run 2 (x’s and solid lines) and run 4 
(dots and dashed lines). Timesteps 40, 120, and 200 are shown. A, b(i, 1, 1); B, b(i, 7, 1); C, b 
(i, 13, 1). 

Rows j = 7 and j = 13 are located in the interior, away from the strong 
damping near the walls. Figs. 6b and 6c show that the filter produces little change 
in amplitude out to wavenumber five or so, whereas higher wavenumbers are 
greatly reduced in amplitude. The filter completely removes the two-grid interval 
wave (number nine) both near the wall (j = 1) and in the interior (j = 7 and 13). 

Figure 7 presents the phase versus wavenumber for each component for b 
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FIG. 7. Phase angle versus wavenumber S for buoyancy b(i, 7, 1). Run 2 (x’s and solid lines) 
and run 4 (dots and dashed lines). A, timestep 40; B, timestep 120; C, timestep 200. 

(i, j = 7, k = l), again for timesteps 40, 120, and 200. The separation in phase 
between filtered and nonfiltered components is seen to be small out to wave- 
numbers 4 or 5. 

Figures 6 and 7 thus show that, away from the boundaries, the amplitude and 
phase of the large-scale components are largely unchanged by the jilter. Thus, 
Figs, 2 through 7 reveal that the filter is able to remove high wavenumber noise 
generated near the boundaries without significantly changing the interior, large- 
scale pattern, and that it is, indeed, “effective” through timestep 200. 

6. DISCUSSION 

For this specific initial value problem and for this specific model, the use of 
a scale dependent filtering technique was found to eliminate the generation of 
noise near the lateral boundaries. Nothing, of course, has been said concerning the 
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integrations beyond the time of frontal formation. The basis of the technique is 
the use of a strongly damping filter at the lateral walls which becomes increasingly 
more scale-selective with increasing distance from the walls. No attempt was made 
to find the “optimum” variation of the filter sensitivity with respect to distance 
from the walls. The crux of this problem is the need for strong damping of short 
waves near the boundaries, yet little filtering in the interior. In this respect, the 
filtering technique acts as a crude “viscous boundary layer” near the walls. As 
mentioned, difficulties still occur near the walls, but the integration can proceed 
largely independent of their effect. 

Run 4 was integrated out to 800 timesteps, with no indication at that time of any 
impending problems. Between timesteps 220 and 480, during which time the 
frontal zone was dissipated, the boundary difficulties caused a spurious decrease 
of buoyancy near the walls, increasing the total potential energy and hence the 
total energy. After timestep 500, a more or less “steady state” situation was reached 
with one large rotating eddy located away from the boundaries. As we have no 
independent integration for comparison after timestep 200, we cannot conclude 
much about the filter’s effectiveness beyond that time, except to note that it kept 
the interior flow uncoupled from boundary effects. The filter apparently dissipated 
the frontal zone, a small scale phenomenon, while having little effect on the larger 
scale vortex which formed from the original perturbation and which produced the 
frontogenesis. 

APPENDIX 1: MODEL CONSERVATION CRITERIA 

The set of continuous equations conserves the total volume integrals of the 
momentum U, buoyancy b, energy &(u” + v”) - zb, and potential vorticity 

( au -- 
ax 

~+f)?!+i@&?!& 

The model equations, finite-differenced in the vertical only and written in “flux” 
form, and in the absence of the convective adjustment scheme, conserve the total 
momentum M, buoyancy B, and energy E, defined as follows: 

M=Ju,dV 

B= /bkdV 

E = j- [; (uk2 + vk2) - (‘“,; I) bk] dV 

581/20/I-4 
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where J dV = 1-l Ji Ji J& AZ dy dx, I is the channel length and K is the number of 
levels in the model (AZ = K-l). No finite-difference analogue of the potential 
vorticity has been found to be conserved. 

Consider the actual integrations, labeled runs 1 to 4. Run 1 is performed 
without convective adjustment and without filtering. Momentum and buoyancy 
are conserved to 10 decimal places while energy increases slightly with time, even 
before the onset of short wavelength components on the lateral boundaries. 
This may be due to the fact, pointed out by Williamson [I 11, that the Lax-Wendroff 
scheme is slightly unstable, both for very long and for very short wavelengths, for 
an equation with advection and Coriolis-type terms included. As the short 
wavelength components increase in amplitude, E increases more rapidly. We see 
from Table II that E has increased by only 1 % after timestep 160 but by over 19 % 
by step 220, shortly after which the run blew up. These results were repeated using 
a smaller timestep, ruling out linear computational instability. 

Inclusion of the convective adjustment scheme causes B to decrease with time 
once adjustment commences. The scheme models the action of dry, turbulent 
convection and as such transports buoyancy upward within a column. Thus, the 
“center of mass of the buoyancy” Z, where 

is increased. For this model the potential energy at a point is given by -zb; 
since the potential energy within a column is required to be conserved during 
adjustment, the average value of b for the column must decrease. Run 2, with 
convective adjustment and without filtering, shows a small decrease in B of 0.77 % 
by step 220. Table II also shows that M remains unchanged and E increases 
similarly to run 1. 

The addition of the filter without convective adjustment (run 3) produces a 
decrease in E with time while M and B remain virtually unchanged. The addition 
of convective adjustment (run 4) again causes B to decrease with time; a small loss 
in B of 0.24 ‘A has occurred by step 220, while E and M behave quite similarly to 
run 3. The increasingly rapid loss of E with time in the filtered runs demonstrates 
the dissipative effect of the filter. The “energy cascade” that characterizes fronto- 
genesis shifts more and more energy to higher wavenumbers, which are damped 
by the filter. In addition, energy is lost near the lateral boundaries where the filter 
is more strongly damping at lower wavenumbers. 
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APPENDIX 2: LATERAL BOUNDARY CONDITION FOR bilk 

The procedure used to obtain bill6 is complicated by the fact that bijk and uijk 
are located at the same value of z. The finite-difference thermal wind relation 
becomes 

for a K level model. The values of uillc, z+lk--l , bizle , and bizael are known. The 
values of bilk and bilkpI are desired. We thus have K unknowns and K - 1 
equations. An additional constraint therefore is supplied; a least-squares procedure 
minimizing 

i2 hle - biuc - @in--l - bie-d12 

allows one to find bill and, hence, all bilr’s. This constraint tends to equalize db/dy 
at all vertical levels on the y = 0 boundary. 
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